Characterization of Homeobox Genes Reveals Sophisticated Regionalization of the Central Nervous System in the European Cuttlefish Sepia officinalis
نویسندگان
چکیده
Cephalopod mollusks possess a number of anatomical traits that often parallel vertebrates in morphological complexity, including a centralized nervous system with sophisticated cognitive functionality. Very little is known about the genetic mechanisms underlying patterning of the cephalopod embryo to arrive at this anatomical structure. Homeodomain (HD) genes are transcription factors that regulate transcription of downstream genes through DNA binding, and as such are integral parts of gene regulatory networks controlling the specification and patterning of body parts across lineages. We have used a degenerate primer strategy to isolate homeobox genes active during late-organogenesis from the European cuttlefish Sepia officinalis. With this approach we have isolated fourteen HD gene fragments and examine the expression profiles of five of these genes during late stage (E24-28) embryonic development (Sof-Gbx, Sof-Hox3, Sof-Arx, Sof-Lhx3/4, Sof-Vsx). All five genes are expressed within the developing central nervous system in spatially restricted and largely non-overlapping domains. Our data provide a first glimpse into the diversity of HD genes in one of the largest, yet least studied, metazoan clades and illustrate how HD gene expression patterns reflect the functional partitioning of the cephalopod brain.
منابع مشابه
Nitric oxide synthase expression in the central nervous system of Sepia officinalis: an in situ hybridization study.
We recently reported the molecular cloning of nitric oxide synthase (NOS) mRNA from Sepia officinalis (SoNOS) using a strategy that involves hybridization of degenerate PCR primers to highly conserved NOS regions, combined with a RACE procedure. Here, in situ hybridization study has been performed on serial sections of the cuttlefish central nervous system to reveal localized specific staining ...
متن کاملPeptidergic regulation of chromatophore function in the European cuttlefish Sepia officinalis
Color patterning in cephalopod molluscs involves activation of a peripheral chromatophore system that is under neuromuscular control. The complex behavior of individual chromatophores is mediated by a specific set of muscles, the chromatophore muscles, that receive direct innervation from the central nervous system. To date, glutamate is the only excitatory transmitter that has been proposed to...
متن کاملPeripheral innervation patterns and central distribution of fin chromatophore motoneurons in the cuttlefish Sepia officinalis.
Body patterning behavior in unshelled cephalopod molluscs such as squid, octopuses, and cuttlefish is the ability of these animals to create complex patterns on their skin. This behavior is generated primarily by chromatophores, pigment-containing organs that are directly innervated by central motoneurons. The present study focuses on innervation patterns and location of chromatophore motoneuro...
متن کاملAnalyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual
Cephalopods provide an unprecedented opportunity for comparative studies of the developmental genetics of organ systems that are convergent with analogous vertebrate structures. The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems. Using a...
متن کاملA Preliminary Analysis of Sleep-Like States in the Cuttlefish Sepia officinalis
Sleep has been observed in several invertebrate species, but its presence in marine invertebrates is relatively unexplored. Rapid-eye-movement (REM) sleep has only been observed in vertebrates. We investigated whether the cuttlefish Sepia officinalis displays sleep-like states. We find that cuttlefish exhibit frequent quiescent periods that are homeostatically regulated, satisfying two criteria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014